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Transmission and Reflecticn of Electrcmagnetic Waves

Normally Incident on a Warm Plasma

Abstract

By
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The solution for an electric field normally incident ontc a warm,

semi-infinite plasma is obtained by means of a mcdified Wiener-Hopf

technique. The warm plasma is taken into account by means of the

relativistic Vlasov - equation.

It is found that the previously obtained

solution of Taylor gives the correct term for the wave number in the

plasma, but not the correct answer for the field. It is shown that the

method of considering an "equivalent' fully infinite plasma corresponds
Y

to a physically unrealistic matching cf the plasma to the vacuum. The

field inside the plasma is found. The field just inside the plasma is

discussed and the non-uniform limit from warm to cold plasma found

by Taylor is not found in our solution.
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I. Introduction

In a recent articlel Taylor hzs presented a solution to the
transmission and reflection of an eleciromagnetic wave normally incident
on a semi-infinite warm plasma. His approach, and the approach of
several others to similar problerns,z-4 involves converting the given
half-space problem into a full-space problem and assuming that the
solutions to the two problems are equivalent. We will attack the same
problem as Taylor without this assumption, by use of a modified
Wiener-Hopf technique. Taylor1 obtains three results: the warm
temperature correction to the wave number of wave propagation in the
plasma; the amount of the incident wave transmitted and reflected at the
interface; and the fields just inside the interface. We shall show that
his first result is valid sufficiently far inside the plasma, but not near
the interface. We shall show that his other two results are not valid.
In particular Taylor's conclusion about a non-uniform transition

from warm plasma to zero temperature plasma do2s not appear.

1. Formulation of the Equations

Following Taylor1 we consider a rectangular coordinate system
such that the plasma is contained in the half space z > 0. An incident
transverse wave with frequency w propagates in the vacuum in the z
direction, with its electric field aligned in the pesitive x direction.

It is noadditional complication to consider the plasma to have a current

R
sheet in the plane z = 0. Setting E = @x E(z)e+1"’“, then the relevant

1. Edward C. Taylor, Radio Science 69, 735, {1965}.
2. E. C. Taylor, Phys. Fluids 6, 1305, (1963).
3. V. D. Shafranov, JETP (USSR) €, 1010 {(1958).

4. G. E. H. Reuter and E. H. Sondheimer, Prac. Roy. Soc. A, 195, 336, (1948).
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equation is

2 2
8E'+w_
3 z? c?

E+iwuoj=

-A ()

(1)

where j(z) is the current density at the pcint {x, v, z) and A is the strength

of the current density sheet.

If a relativistic ccllisionless plasma is

considered, then the plasma current is given by

e S ﬁcuxfd3u

where B=1+ u?,

and f is the solution of the relativistic, linearized, collisionless Vlasov

equation5
of
. of _ e o
-lmf+ﬂcuzaz—-mcE5u'}{ ‘ (2)
Assuming specular reflection cf the plasma particles at the
boundary we obtain the integral equation fcr E
32 w [ -~ B 1Y '
(— +— )E - K (|z~zi,u_w.‘z-,dz (3)
9 z? c? o T
o
- S KT(IZ—Lz'})E(z'}dz':—AB(z)
o
where
i _w R L w o 8f
KT(ITI): 2 S‘ duxg duv.g\d z U 9 u
c - -0 Y ve
e Py T 1‘. (4)
P omou e

5. R. C. Clemmow and A. J. Wilscrn, Proc. Roy. Scc. {London)

A237, 117, (1956).
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which equations are Taylor's (4) and {5) respectively.

To solve equation (3) transforms seem an obvious choice.
Unfortunately the range of integration of the irtegrals in (3) is only
semi infinite; in any case equation (3} is valid cnly for z > 0. 'I‘aylor1
gets around this problem by the assumpticn that E{z) = E(-z) (and the
implicit assumption that fo(z) = fo( ~-z}} thus ccmbining the integrals.

He thus considers the different problem where the medium is infinite
and the fields are symmetrical. He then internds to match the solution
for z >0 to this problem to the solution for an incoming wave. Itis not
at all clear that the symmetry which is inherent in this different problem
is relevant to the original problem.

We note that equation (3) is really valid only for z > 0. Thus the
given problem seems a logical candidate for a Wiener-Hopf approach.
Because of the z + z' in the last integral, the sclution is not a straight
forward application of the ordinary Fourier trarsform. We need to use

the generalized concept of a Fourier transfcrm.6 We then define the

\

four integral transforms

E, (= 5 X% E(z)dz
‘o

(o]
E (k) = S‘ X% (5 dz

® ) (5)
Ef k) = 5 e K2Zp i 4y

(o]

o

5 e 2k (5 dy
o0

‘ /

6. See, for example, J. Irving and M. Mullineux, Mszsthematics in Physics

o
Ko
1

and Engineering_, Academic Press, 1959,
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Let © o
o ikz' v ' '
Hl(k)g‘)__ e E(z') KT(fu»;)dudz
(o} Lz!
and

@® z!

<1t r
H; (k).-:S ¢ "ikz E(z") j K._ (Jlul)dudaz'
° o

Then equation (3) becomes the 4 equations

(0?/c* -1 - W ) E, -E}(0) + i k E(c) -, E:*- Hi + H, = - A/2

i

(@?/c* -k*)E_-K E_ + Elfo) - ik E(£) - E_‘E_f + Hy - Hp = -A/2

(0?/c? -~ K% - E_)'E‘f (0) - ik Efo) - % _E, - Hy + Hy = -A/2

(w?/cz - kz)rf-fE':.T*f E'(o) + i k E{o) - 'nz+ E++ H, - Hy = -A/2

where we 'havelusegi‘ the symmetry of K_ (and x

K is the appropriate transform
—_— 9E + . .
a.nd E:'k.(o) = (z =9 Y, while E(o) is E(z = o).

of K ) to ‘?1.1@.1;1-?"?3;"*_
These equations form a linear set for the four quantities Ei’ E:l:'
It is convenient to eliminate the difficul: quantities Hy and H,. We obtain,

after some algebra,

2 KE! (o)
E+F =- —22 - (6)
(W2 /c?-K2K) (w?/c? - k?) {w?/c? - k?-K)
po e
where f=?++'§_=3 KT(!Z]) % 4z (7)
-0
This simplifies to
(a2 E/(o) ) 2 Eied
E +E_= — - —— (8)
wz /CZ _ kz -K wy‘ ,-!CZ _kZ

Now E+ + ET_ is not really the ordinary F:urier transform of E, for the

entire space, since the paths of integraticn involved in the integrals are
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different. E'_; is the Fourier transform of a function

E(z) z>0
f(z) = { (9)
o

z<o

and conversely for E_. Thus the analytic function f_l_ (k) is analytic in

the upper half k plane . If E(z) vanished for z sufficiently large, then, as
can be readily seen from the transform definiticns {5) E__l_ (k) will actually
be analytic for the imaginary part of k slightly negative. On the other hand

E_(k), which is the Fourier transform of a function

o Z >0
g(z) ={ E(z) z<o, (10)

is analytic, from its definition (5), in the entire lower half plane. The
boundary conditions which we will impcse on the solution E(z) to our problem
will be the following: E(z) is to be oscillatory, or perhaps damped, but not
exponentially growing, in both half planes. Then both E:_ (k) and E_(k) will
be analytic up to and including the real k axls, except perhaps at isolated
singularities on the real axis, or branch lines which extend into the lower
or upper half planes respectively. Thus there is at least a common line,
namely most of the real axis, with an uncountable number of points, along
which both E;_ (k) and E (k) are analytic.

We now will apply a Wiener-Hopf argument. That is, we try to
separate equation (18) into plus functions, funcidens analytic in the

upper half plane, and minus functions, analytic in the lower half plane.

2 E _;_( o)
The term

has poles on the real axis. It is not
w?/c? - k?

immediately obvious whether itis a + function or a - function. We employ
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the boundary condition that a wave of the fre= space wavelength
cannot propagate in the plasma. Thus it mustbe assigned as a
- function. The term

A - ZE_'i_(o)

- — = I (k) (11)
w?/c? - k% -K (k)

has both poles and two infinite lines of singularitie’s, so it is not cbviously
+ or -. Its singularities are depicted below in figure 1. Consider the
possible cases. As long as the poles and branch lines are split, one can
draw two lines, depicted as 1 and 2. (If the pcles and '"branch points"
are on the real axis one can still draw such a pair of lines, only around
the poles and branch points in an obvicus way.) In the cross hatched
region, I (k) is analytic. Thus we can write, using Cauchy's integral

formula,

I(k):zjri h "IéT(gT) d ¢

R N G ((3) 118
_Tﬂi.jl—g—_kd§+2ﬁ , ok 46 (12)

We now have I (k) written as the sum of two functions. Looking at

the first integral, as a function of k, we see that its only singularity is a

ocle, and that the curve 1 passes below the pole., Thus the f2r=f irtegral
2 . r

I (k) = 1 I (£} de
+ T 2wi 1 -k

can be differentiated under the integral sign, and the resultant integral will

converge for all k lying above that pole. Trus I, [k} is actually a plus




function. Similarly

IS S G & ()
L= zmr ) o O

is a minus function. Thus we have written
I(k) = I (k) + I+ (k). (12a)

To evaluate these integrals we complete a closed contour for each, and

chose to close up for each integral; then use Jordan's Lemma. Then

Ck

_ _=C P - dé ‘
I (k) = — + 3 g =7
-k i 3 (6 - K)(E2 + K(E) - w?/c?) (13)
¢
C iC kp S d¢
I, (k) = I(k) + - P
+ ( k-k, ™ 3 (& - kMEY+ R(E) - w?/c?

where kP is the positive zero of
k? + Klk) - w?/c?

(It is anticipated that, to the first approximation, there is only one),

2E', (o) - A
and C=
2 k
p
Thus
2E" (-
E -1 =-Fl+1I K- (—F (14)
+ - . R
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The right hand side of (14) is analytic in the lower half plane, and the
left hand side analytic in the upper half. Thus the twosides are different
representations of a single function, which is analytic everywhere. If
E(z) is integrable-at the origin, then by the Riemann-IL.ebesgue theorem
its Fourier transform vanishes for |k | ~©. By inspection, the other
terms in {13) vanish at infirnity. The only entire function which vanishes

everywhere at infinity is zero. So

-El- = I+ (k)
(15)
2 E-'l- (o)
E =1_(k) -
w?[c? - k2
Using the inverse transforms for equations {19) and (20),
and adding them we obtain
_ 1 (  -ikz = , 1 e -ikz
E(z) = - Le E, (k)dk+ 5 ‘)c e T (k) dk (16)
2

where the path c; is necessarily above all the singularities of'E_+ (k) and
the path c, is below all those of E_(k). For z > 0 the integrals in

(31) can be evaluated, using Cauchy's formula, by closing a contour
downwards. Since the second integral has no singularities there, it

is sufficient to write

-ikz

E(z)=21-1? g e E, (dk,z>0. {16a)

The integral for E _(z) is not meaningful for cur preoklem since equation (3)

is valid for z 3 o only.




ITII. Solution to the Equations

The problem is then reduced to evaluating the integral (16a)
for the electric field in the plasma. It is useful, before evaluating
this integral, to analyze the approximate nature of the results.

From (11), (13) and (15)

2k_C ] ik d ‘
E, (k)= —2 Jrc:{k_E 2 : }
w 2/c?-k* “Klk) P Y3 (£-kNE + RlE)-w? /c?)
(17)
Equation (17) has poles at the zeros of
k% + K (k) - w?/c? (18)

Anticipating, as we already have done in the previous section, that there
are only two such poles, symmetrically placed, we see that the second term
in (17) cancels the pole at k = kP. Thus there is only one wave, corresponding
tok = - kp’ which is propagating into the plasma. In the above statement
we have tacitly assumed the zero of (18) is real. If it is complex, then the
wave is, of course, damped. There is also a contribution to the field from
the branch line type singularities. In general, this would mean a decaying
contribution to the solution, whose exact nature will have to be determined.

We note that the field in the plasma is linearly dependent on the
zero field ElO) as well as (contrary to Taylor's fcrmulationl,) on the
current sheet strength.

We see then that the branch line situa*on must be that shown in
Figure 1. Any other location of the pcles ard branch lines relative to the

path of integration, while possible, would resuit in either an incoming
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wave due to the other pole, or a growing expcnential due to the cther
branch line lying in the upper half plane.

The solution to (17) will be matched to the solution to equation
(1) for z < o, namely an incoming and refiected wave.

We must now turn to the task of evaluating the integral above.

BRE) 5 04 - ~

We are first faced with the calculation of K {k), which is given by e

(7). Using the definition (4) it is easy tc see that

Zmpz © © afo
Klk) = S dux‘g\ duy‘g\clj duZ ﬁcu8u

u
2 - -© o x c z 2

¢ (k ) -1

{

(19)
Thus it is easily seen that K(k) has singularities due to the vanishing
denominator of the integrand. As will be shown later, these singularities
appear at all k such that+ k> ®/c, which curves are, effectively, branch
lines.

If fo is taken to be Maxwellian in v=l5city space, then the integral

(19) is easily converted to the triply in‘inife integral

9 f
w 2 Cﬁux E)uX
—mk)z 2 S‘du kc
/C I3 ﬁuz"}"

If we let

_ ke
ns —,
w

it is shown in the appendix that this ca:xn b= wriltlen

O ~
CZ k

Q) 2 v
Rl) = 2r -2 S\ _i_ £ da . (20)
O




This integral shows clearly that Klk} *zs branch lines extending outward
on the real axis fromk = * °/c. Tka integral {20} can nct be evaluated
explicitly in closed form. However, if fo is Maxwellian, and the
temperature < the plasma is fairly low {ie: A > > 1), then the integral
can be evaluated asymptotically for A — «. This is done in the appendix
and the first order {in /mc

of nand A . The answer is

2

Rk) ~ 2 { 3 ¥ NTN [ 1 - -—3=——Jexp( -A
cz  R2(m?2-1) iN2@2-1) 2(n%-1) 2(n%-1)

i NN
erfc (._11.'_._ ) }
N 2(n?-1)
Equation (21) is too complicated to be useful. One can simplify (21) for
either of two cases, N A /n >>l and N A/n < <l. The former corresponds
to low temperatures at some distance from the plane z = 0, while the
latter corresponds to low temperatures very close to the plane z = 0

(from Tauberian theorems about Fourier transforms). One obtains

kT

LmRE) ~[ 1+ (n? - °/2)

w 2 a2 a
- mcz]mplc (21a)
'J n —* o

which is the answer obtained by Tzylor . Thatis, at some dis*znce

from the interface z = 0, K[k} is ess=ntlally gquadratic in k, so that

@ = k* - Kk

(3]

s
2 &) - Cm
“’*"i)-—[l—nz- p‘[l%‘_(nz_b/;:?\ wUd ]}.
CZ L wa

[3
3
(e}

b
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Thus we obtain ]
2
W 3 (aal Z
N NI L
Kk =2 =2 e (22)
Pe o] kT
\ 1+ (=)
(.\)2 1‘).'1(.‘.3

Thus, far from the interface there exista, for »° > :o; {1 - 5/2 \)
a propagating, unattenuating wave with wzve number given by (22). For
lesser frequencies this "wave'' is damp=sd with 2 characteristic length
given by the reciprocal of the absclute value of {22).

The limit (21a) is equivalent to an expansion of K(k) for small k.
As seen from the definition of the inverse transform (16a), and the
usual ideas involved in the method cf st:tionary phase, for z large
compared to 1/ N x , it is those values of Efk) for small (compared to
i '\T?—) k which contribute to the integral. On the other hand, for z
small compared to I/Nf)\_, the entire range of values of E(k)

and in particular the values for large n are sigrificant. We obtain

lim _ w2 ‘o
K(k) ~- £ i [——
NN/n —~0 c? 2{n*-1)

so that

Thus, for large enough k, the branch lirs of Klk) is the most significant
part and the term w?/c? - k¥ - Kfk) doez n>t appear to have a pole. Thus,

the first two terms of the irv=erze transficrm (i7) becoms
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[e2]

-inzwe/c
E2) ~ (4 - 2830 S | . cE
- 00 2
(nz-l-)"l - ifP_ /__l"}__ )
w? N 2(@n?-1)3

For sufficiently large n the denominator may be expanded, and then

integrated term by term.

2

(A-2E' (o)c : o
E(z) ~ — %+ {e'MZ/C -3 2 /"7“ ZZHZ(Z)(“(’:_Z)} (23)

4w
c?

where H»V(Z)(x) is the Hankel function of order v . The solution {23) is an
asymptotic solution and is clearly not convergent unless \ < 1,
Quantitative answers cannot be obtained from this expression for the
value of E, We shall return to this point later. We note, however, that
both terms of (23) are essentially waves of the free space wavelength.
Thus, the incident wave appears to penetrate the plasma with its wave-
length esséntially unchanged for a sufficiently small distance.

We have yet to consider the branchline integral in (17). This is

I (k) = y £dg
L (£ - K)(E2 + K(£) - w?/c?)

Let c4 be the curve on one side of curve 3 and cs the curve on the other

{see Figure 1). Then
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w

I (k)

5 £dE
£, (E-K)(E? + Ky (§) - w?/c?)

0

) S £dt
£, (E-K)(E? + Ks(£) - ¥/ )

o

- 5 £ {Rs(E) - Rylf) } dt o5
£, (E-(E2 + Bylf) - o/ ENE + Kilf) - /)

s o]

Using the integral representation for K we obtain, following Taylor, 2

w? (o)

_ _ - 41rw2 I 8f0 cﬁuzw B
Ks (§) - Ka () P S‘ x Residue [ ( 35 ) (EcPa_ - w):} dx
. Z z

. Bu, = 'g%

w?pc 3 ! 2 _f } [__): __lz____J
2w ) /zil-x(l gzcz) °xP Zczgz 2

The important feature in (26) is the presence of the exponential

wZ

exp {_% m } . For'\iT/g — o then this is a very rapidly
decreasing function. Since §o-is w/c then the integral (25) is a L.aPlace
type integral in the variable

1

CZ gz

—_— -1

thus

(26)

(27)
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where B = = — Nk , and againn = ke
m 2 3 [

€
€

The evaluation of {27) is nct available for arbitrary values of n.
However, since what is desired is the inverse transform of (25), we will

compute

>
i
[
=}

(2 E (0} - 4

2T c

 Z 2
¢ I; (n) dn,

E; (z) =

<
|s
oy
C
8
o

by inverting the order of integration. For z >0,

B(ZE;_(C)-A) S"? { -x-(l x}exp{ Tx-l“"" Z0 L ax

Ez (z) = 5 o NE— ¢
° 1+ x £ Kl(x))(l+x—2— K (x))
(4)2 0)
(28)

This is evaluated by steepest descent (for large X ) in the appendix. We obtain

Ea(2)= - D (25 /2{ -%—(I-J%}>j eip{-Jijf v ol )},

(29)

. c3 (2E'-A) 2
1 -1i : + mc .
where D = and N = —=- as before. The exponential factor
21 32 w? kT

decays so rapidly fof small temperature (large X\ ) that the multiplicative

3
factor of )\'/z has no effect. Likewise for small z, E, decays exponentially
as z — 0. As in the previous calculations there is a difference in detailed
behavior depending on whether the lim { A= « and z — 0) is taken as
A \/x . _ .

e — 0 or — —> o, However, bcth limits have an exponertial decay to zero
for z — o.

Thus in the evaluation of the twc poriiins of the electric field on the

. A . 1
plasma we find several distinct differences from Tayler's results, and one

identical result. The wave number for the wave prepagzting far enough
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in the plasma is the samsa. The value of the amplitude of this wave

differs from Taylor. Our result gives

|Eqlz >>e)| = |2E(0) - A | /2k = [C |

and thus depend

n

on the as yet undetermined E!0) as well as A,

The field just inside the plasma boundary is not that obtained by
Taylor. First we do not obtain a contribution from the branch line integral,
which gives Taylor his non-uniform limit. We find this contribution
vanishes. We find that the solution several Debye lengths into the plasma
can not be continued to the boundary. We are, however, unable to obtain
the warm plasma solution rear the bcundary in a form which allows a
limit T > o and z — o to be taken. This non-uniformity is not surprising
since the form of the distribution function for the plasma (A3) is a
singular function of T. To obtain the correct expression for the field
near the boundary, the full expressicn (21) must be used in the inverse
transform. This is a task which tke author has been unable to accomplish.
We can only state that the wave appears to peretrate at the free space
wavelength and then, in a distance of the crder of a Debye length, alter
to the plasma wavelength. However we can state tﬁat Taylor's

non-uniformity is not valid.

IV. Matching to Free Space

We show how we might match our soluticn tc the incident wave in

free space, which can orly be in the form

E{(z<o) = Eo exp - 1 {wi-kz) + R Eo exp-ifat + kz), (30)

L%
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where R is the reflecticn ccefficient. Let ZE_"_(O)-A = 2i kP TEO, where

T is thus the transmissicn ccefficiernt. The matching conditions are the

appropriate continuity eguziicns for the fields. From (1) it follows

. . oE .
that E must be continucus across z = 0. However, 35 is clearly not,

and thus B is not coniinuocus. It follows from the presence of the current

sheet, or from integrating {1) from - ¢ to +z, that
OE IE
z > 0) - z <0)=-A. : 31
3o (2>0) - 2= (z <0) (31)
Then

E (1 + R)=E (¢)

(32)

+
. _ AE(0T)
lkEo(l-R)-—'—a?—‘{‘A

are the matching conditicns, and the amplitude of the wave sufficiently

far inside the plasma is given by

2EY{0) - A
E(z >>0) = —TE— %P -i {wt - kpz). (33)
p

For T > 0 we have been unable to evaluzate E_'!_(O) further.
In the zero temperature limit where the solution (33) can be extrapolated

to the plane z = 0, then one obtzains

2 o A
TS e ¥ TETTITE
% (34)
=1-a A
R = 1 & BT E \’ =
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reflection are obtained by tzking A = 0. We note that the transmission
can be blocked by tzking A = 21ik Eo . A solution for non-zero

temperature awaits an inversion of the transform valid for small z.

V. Summary and Conclusions

The usual approach to waves incident on a semi-infinite él‘asma
has been to convert the problem to an infinite domain probliem as Taylor
has done. To do so;? 'an artificial sheet currentl source rmust be intro-
duced at the origin, of strength A %= 0. We have here solved the problem
by considering the semi-infinite problem directly. The current source
sheet has been refained, although there is no need for it. The field
inside the plasma has been calculated. The wave number kp in the plasma,
except near the interface, is given by {22) and the amplitude by (33) in
terms of the field é.t the boundary and the strength A of the current sheet.
The zero temperature transmission and reflection coefficients have been
explicitly calculated. We obtain Taylor's zero temperature results by =
taking A = 0. Thus it would appear that we have successfully avoided 'the
necessity of creating a current sheet, and we can inirestigate what a real
current sheet will do. As we point out, such a non-zero sheet will block
some of the transmission, and increase the reflection.

For non-zero temperatures the wave number sufficiently far
inside the plasma agrees with Taylor.,l However, the calculations for the

field do not agree. We have a solution for the field strength, which

.Taylcr does not have.

The behavior near the boundary is quite different. The term
which gives rise to a non-uniform limit in Taylor's calculations vanishes
in ours. We have an integrz] representaticn of the field near the boundary,

on the Fourier transform {21). The delziled study of the field near the




boundary requires the inverzion of this inlagral. We have been unable to do
so in a form suitable for computz<icn. Thus a numerical value for the

field at the boundary is nct yet avzilable, except for the zero temperature
limit. We conjécture from one siudy of this transform that the wave enters
the plasma with its wavelength unchangsd, but generates other waves which
then alter the wavelength to l/kp. We note, however, that in the derivation
of E (k) we have assumed that the distribution function fo is independent

of z. This is certainly not sonear z = 0. Thus even.yhen we obtain

an inversion of (21) near z = 0, it must be suspect. We can conclude

that the previously obtained answers of Taylor appear to be wrong.
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Appendix I
-— 7 3 m . 1 X te & . . .
Fellowing Taylor we write the irtegral (19) in spherical

velocity coordinates. Then

W’ > I g of
- P u¥sir® 0 coslo )
Kik) c2? S; duS‘o dego d npucos v -1 P Jdu (Al)

Integrating on ¢ and changing variables £ = cos 0, we obtain
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for large \ .

where o° = and we have expanded
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The integrals in (A5) are tabulated in Abramowitz and Stegun (Handboock

of Mathematical Funciins)and elsewhere,
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For n finite, the limit for large & (small temperature) is obtained by the

asymptotic expansion of the complementary errcr function
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However, for n — o, for fixed A, cne needs the series expansion of the

error function. We obtain
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We wish to evaluate equation {28) by the method of steepest

descent. Let
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and let
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Thus the saddle points are at the solutions of
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At the saddle points
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The quartic equation (B3) is very difficult to sclve. However, for large A\
or small z, it is easy to see that x_is lzrge, and thus the solutions to (B3)
are approximately the four fourth rocts of a negative number. And for large
A the function h(x) is approximately x, so that the paths of steepest descent,

that is the paths of Im h(x) = constant, are the horizontal lines through X

Thus the original path of integration from o — o can be deformed to the

path of steepest descent. Thus for sufficiently large A (or sufficiently

small z} we approximate our answers by
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then the denominator should be simplified, using the

expansion of K(k) for large value of the argument. Then
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